IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 32, NO. 4, APRIL 1984 365

Multiple-Post Inductive Obstacles in
Rectangular Waveguide

PING GUAN LI, ARLON T. ADAMS, SENIOR MEMBER, IEEE, YEHUDA LEVIATAN, MEMBER, IEEE,
AND JOSE PERINI, SENIOR MEMBER, IEEE

Abstract —A complete analysis of multiple-post inductive obstacles in
rectangular waveguide is presented. A moment method solution with ex-
ponential (e/%) expansion and weighting functions is used in a Galerkin
solution. Post currents are expressed as a Fourier series. As many Fourier
series terms (¢/"%) as desired may be included. All higher order (cutoff)
mode interactions between posts are taken into account. The solution is
rapid and accurate, and errors may be controlled (specified). Data are given
for the triple-post obstacle and for a two-element filter.

I. INTRODUCTION

HE CYLINDRICAL POST in a rectangular wave-

guide was first treated by the well-known and widely
referenced variational method of Schwinger [1], and the
results are given in Marcuvitz’s Waveguide Handbook [2].
Fig. 1 shows the geometry and a cylindrical coordinate
system centered at the post axis. A dominant mode is
incident upon the post which is assumed to be a perfect
conductor. The currents induced on the post are longitudi-
nally directed (parallel to the post axis) and vary Ccir-
cumferentially. There is no longitudinal variation of the
currents. The post currents thus may be represented in
terms of a Fourier series ¥ 4,e/". Schwinger had taken
into account the zeroth and first-order terms of the series
in his variational solution. The results were limited to posts
which were moderate in size and distant from each other
and from the waveguide walls, but very accurate within
those limitations. The results were useful in the design of
microwave post filters.

Craven and Lewin [3], [4] pointed out the advantages of
a triple-post configuration, such as that of Fig. 3, in
suppressing higher order modes. Mariani [5] analyzed the
triple-post configuration, but found it necessary to add
experimentally determined correction factors.

Recent work with inductive posts includes that of Abele
[6] and Moschinskiy and Berezovskiy [7]. Abele treats
the symmetrical-post arrangement. Moschinskiy and
Berezovskiy use a doubly infinite set of linear equations.
Neither treats higher order mode interactions. Posts with
gaps have been treated by a number of authors, including
Joshi and Cornick [8], Eisenhart and Kahn [9], Hicks and
Khan [10], and Williamson and Otto [11]. Ferrimagnetic
posts have been treated by Okamoto ez al. [12], and induc-
tive strips have been treated by several authors [4], [13],
and [14].
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Fig. 1. A single-post obstacle in a rectangular waveguide.

As time went by, filters of higher Q were desired. These
could be obtained by using either larger posts or a multi-
ple-post configuration, such as that of Fig. 3. For either of
these choices, it is necessary to take into account the higher
order terms of the Fourier series. This paper uses a method
of moments [15] solution to the single- and triple-post
problems and to arrays of such post configurations. Ex-
ponential expansion (e/"’) and weighting functions [15]
are used in a Galerkin solution, which is also variational.
The complete formulation is developed for all terms of the
Fourier series. The series is truncated at n=+ N and a
matrix equation is obtained for the unknown coefficients
of the Fourier series. The convergence of the solution is
studied as a function of the number of terms used. In some
cases, terms were required for N as large as five.

The solution utilizes an infinite series of images (Fig. 2)
of the post currents to obtain the electric fields in the
waveguide. Thus, fields are represented in terms of free-
space post currents. The scattered fields are expressed in
terms of a single polar coordinate system through the use
of the addition theorem of the Hankel function. Incident
fields are also expressed in terms of the same polar coordi-
nate system. The application of the boundary conditions at
the post then yields the complete equations which, when
truncated at n =+ N, represent a system of 2N +1 un-
knowns, which may be expressed as the matrix equation

[c]=[H][a].

Because of the use of image fields, the elements of the
matrix are each represented as infinite series which con-
verge very slowly. A method is found which enables us to
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Fig. 2. Images of the single post.

sum the real part of the elements of [H] in closed form.
The imaginary part is changed to a form involving both
proper and improper integrals. Both are evaluated numeri-
cally. A method is developed for estimating and specifying
(controlling) the errors involved in the numerical evalua-
tions. The computation is very rapid and the errors due to
numerical evaluation may be specified. There are three
sources of error: a) the evaluation of the proper integrals,
b) the evaluation of the improper integrals, and c) the
truncation at » = + N. The first two sources are controlled
by specifying error levels, and the last is evaluated by
varying N and observing convergence.

Once the post currents (coefficients of the Fourier series)
are obtained, the total scattered fields, transmission and
reflection coefficients, and equivalent circuits may be read-
ily obtained. The data for single posts of moderate size plot
right on top of Marcuvitz’s data. The data for larger posts,
and for those near the waveguide wall, agree within a
fraction of one percent with data obtained from a mul-
tifilament approximation described in a previous paper
[16]. The triple-post data also agree precisely with that
obtained by the filamentary model.

Each of the two models used has its advantages. The
Fourier series current model is variational, requires fewer
unknowns, and is particularly suitable for cylindrical-post
geometries of all types. The multifilament model is simpler
and may be more generally useful in the characterization of
obstacles of arbitrary shape.

For triple-post configurations, such as that of Fig. 3, the
formulation is quite similar to that of the single post. For
arrays of posts with separation in the direction of propaga-
tion, the formulation is quite different. For the most accu-
rate results, higher order waveguide mode interactions must
be taken into account. In this case, the elements of [ H] are
of a more complex form. Methods are used again, to
reduce these forms to those suitable for computations;
both the real and imaginary parts are expressed as in-
tegrals, which are evaluated numerically. Again, the errors
involved are controlled by specification. Fig. 4 shows the
in-line case (post-centers have identical y coordinates). Post
arrays with non-in-line elements also can be treated by
similar methods.

As a result of the formulation developed, one may treat
arrays of posts in a rectangular waveguide, taking into
account as many terms of the Fourier series for the cur-
rents as desired, and taking into account all higher order
mode interactions between posts. Asymmetrical post con-
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Fig. 3. A triple-post obstacle in a rectangular waveguide.
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Fig. 4. A single-post array in a rectangular waveguide,

figurations may be treated; for example, the off-center post
data of [16] was calculated by both the Fourier series
surface current and the filamentary current models. Results
are presented for the equivalent circuits of triple-post con-
figurations and for the filter response of a two-element
post filter.

II. THE Basic FORMULATION

In this section, the basic formulation for the single-post
is presented, and the formulations for the triple-post con-
figuration and for the post array are summarized. In each
case, a matrix equation is obtained for the post currents.

A. Single- Post Obstacle

Fig. 1 shows a rectangular inductive post in a rectangu-
lar waveguide. Dominant mode fields are incident. A domi-
nant mode traveling in the z direction is incident upon the
post. A cylindrical coordinate system is centered on the
post axis at z =0, y = ¢. The incident electric field E} may
be expressed as follows:

El= Eoe"k"sin(zaz)

(1)
where

k’=\/k2—772/a2 =%\§ and k=—2>\1.

The incident wave can be expressed in Fourier series
form. Substitution of y = ¢+ rcos@ and z = rsiné into (1)



LI et al.; MULTIPLE-POS1 INDUCTIVE OBSTACLES IN RECTANGULAR WAVEGUIDE 367

yields

, . ¢+ rcosd
E;:Eoe—lkrsm051n[ﬂ( p )}

— __EQ { ej[('lrc/a) —krsin(8 — a)] __ e — Jl(me/ay+krsm(8+ a)]}

2j
)
where
a= tan‘l( i )
ko
The generation function for the Bessel function is [17]
/D —17h = i J(x)e".
n=-—00

Let t =e’%, x = kr, and the generation function becomes
s ]
Y, J(kr)em. (3)
n=-—0o0

Replacement of @ with § + « in (3) and substitution of (3)
into (2) yields the desired Fourier series form

ejkrsin0 =

[e¢]
El= Y, EOsin<%c + na)Jn(kr)e_f”o

n=—c0

= i (—1)"Eosin(—7:—l€—na)Jn(kr)€’"0~ (4)

= —00

The post surface current density may be represented as

0
Y alelnd.

n=-00

J.(6)= (5)
Thus, full-domain expansion functions e/"® have been used
for the post surface current. Identical weighting functions
are used later, resulting in a Galerkin or variational solu-
tion [15].

The post currents now may be imaged across waveguide
walls. Imaging across horizontal walls (x = 0, b) yields a
cylinder of infinite length. The fields in free space due to
the currents of (5) on a cylinder of infinite length in free
space are

[oe}
Y a,HI(kr)e

h= —0o0

E =

X

(6)
where the coefficients {a,} and {a,} are related [18] b

2we
a,=———"———q,. 7
" KaryJ,(kry) " Q

Imaging across vertical wayeguide walls yields an infinite
number of such cylinders in free space (Fig. 2). The total
scattered electric field (the field due to post and image
currents) may be expressed as

ES= Esost + E;mages( +) + E;mages( =)

(8)

where images (+ ) represent images with currents identical,

h,= 6,jH,<2)(krO)+ {

opposite, respectively, to post currents. Thus

o0 0
Em= Y Y a,HP (ke

[=—c0 m=—0c0

[+0

0 © '

X X a,HY,(kn)e v (9)
17;000 m=—oco

The addition theorem of the Hankel function [19] allows us
to represent the above results in terms of the cyhndncal
coordinate system of Fig. 1, for r <2a

E 1mages(+) —
x

and for r <2¢
Eimages( -)—
X

o0 o0

- Y % oa ¥

[=—00 m=—m n=—oo

H®, [kQla—2¢)] J,(kr)e/™.
(11)
At the surface of the post, the total electric field must be
zero, i.e.,
Ei(r=r)+E.(r=r)=0. (12)

Substitution of (4), (6), (10), and (11) into (12) yields an
equation with triple sums. Multiplying that result by a
weighting function e ~ /" and integrating from 0 to 2 in ¢
yields by orthogonality the following equation:

[ee] [oe]
a,HO(kr))+ Y, a,{ Y. H®, (k2la)
mee ML

> H,sam[k(zza—zc)]}

I=—o00

T (kry )+ (—1)”E(,sm(faE - na)]n(kro) =0,

(13)

The current is now approximated by a finite number of
expansion functions, and (13) can be written in the follow-
ing matrix form:

[c]=[H][q]
where matrix [H]= {&,|i, j=— N, -,
described by

(14)

~1,0,1,---,N} is

Y. H? (kla)
[=—
[#0

5 fﬁ‘i’,[k(2la—2c)]}f,(kro) (15)

[=—o0
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and where 8, is the Kronecker Delta

1 i=j
6’12{0 i#j’
and
vector [¢]={¢,}  (i=-N,---,-1,0,1,---,N)
&= (=1)" " Eysin( = — ia} (k) (16)
and
vector [a] = {a,}  (n=—N,--,=1,0,1,---,N).

Thus, expansion and weighting functions e’" have been
used where — N <n < N. N may be varied to study con-
vergence of the solution. 4

Note that a slightly unusual definition of matrix [ H] has
been employed in which the subscripts can be zero or
negative integers

r A

h—N,—N

[H]=

B. Triple-Post Configuration

The triple-post configuration shown in Fig. 3 is often
used in microwave filter design. This configuration can be
treated by a method similar to that of the single post. The
results will be summarized here. They are given in detail in
[20].

Assume that a dominant mode is incident upon the
symmetrical triple-post configuration of Fig. 3. The in-
duced current density on the centered post is

o0
()= X ae

n=—0o0

and that on the left-hand post is

T (0)= X b

n=—00

(17)

(18)

Then, by symmetry, the current on the right-hand post is
o0 o]
L(0)= T Beme 0= ¥ (1) .

B (19)

Imaging as before across the horizontal wall yields three
cylindérs of infinite length. The corresponding free-space
fields due to these cylinders with currents (17), (18), and
(19) are, respectively

n=-—o00

E =

X¢

o0
Y a,HO(kr)e"

n=—o

e ¢)
= ¥ BHP(kr)e

n=—00

(20)

E

x!

(21)

o0
E,~ ¥ bHP(kr)em0

n= —oo

o0
Y (=1)"5,H®(kr)e /"®.

n=-w

(22)

Primed and unprimed coefficients are related by (7), as
before.

Boundary conditions are applied at the center post and
at one of the other posts. The result is a matrix equation.

(#0] | [1#9]|[[a]] [1e4]
[i;ﬁsﬂ‘ib@i][tzi]‘[m] )
_la]
SRUIH
where
=8, HO(kr)+| Y HP (m2ka)

= X HE(mdka+ka) |](kr) (24)

m=—o0

0
hff) = Y [H,(E)J (m2ka —(%ka - kc))

m=—00

~ H® (m2ka — (Lka + kc))

1+

+ H? (m2ka + (ska — ke))

1+
~H,(3)J(m2ka+(%ka+kc))].],(kr0) (25)
¢t = (—=1)"" Eqcos (ia) / (kr,) (26)
(o]
h= Y [H®,(m2ka+(ika - ke))

-H? (m2ka — (3ka + kc))] J (kry) (27)

o0
WP =8, HP(kn)+| Y H?2 (m2ka)

m o0
m#0

- Y H®(m2ka-2kc)

m=—oc0

o
+ ), HP(m2ka+(ka-— 2ke))

n=—oQ
- X H? (m2ka+ka)|J(kr)) (28)
c,b=(—1)’“1305111(%0—m)J,(krl). (29)

Matrices [a],[p] represent coefficients of (20), (21) where
— N<n<N. Thus, all square matrices [H®] of (23) are
2N +1 by 2N +1 and all column matrices [a],[6],[¢?],[c?]
are 2N +1 element columns.
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C. Single- Post Array

Fig. 4 shows two posts whose axes are identical y coordi-
nates and different z coordinates, i.e., they are separated in
the direction of propagation. A dominant mode is incident
upon the posts. Post currents are represented as follows:

e o]
JO(0)= X ape’ (30)

n=—ow

o0
0= L e

n=—0o0

(31)

and electric fields due to the corresponding infinite cylin-
ders in free space are

oo}
X a,HP(kr)e

n=—oo

E©®=

(32)

o
EV= T bHP()ert.

n=-0

(33)

Primed and unprimed coefficients are related by (7).
The incident fields may be expressed in terms of either
polar coordinate system

[oe] .
Ei= Y (—1)"Eosin(%c - na) J,(kr)e/"®

n=-00

(34)

o0
Y (=1)"Ege _Jk'dsin(%c - na)Jn(kr’) et

T (35)

El=

where

a1 T ) o i1 ) = eoe-1 [ K
a=tan (k/a)—sm (ka)—cos ( T )

The addition theorem for Hankel functions is applied as
before. A transformation of coordinates from one polar
coordinate system to the other is also required. Boundary
conditions are applied at each post and orthogonality is
invoked, resulting in a matrix for the qoefﬁcients which is
identical in form to (23). Matrices for this problem are
defined as follows:

o0
Y, H®, (k2la)

I=-—00

hs}r)n = aanrEZ)(krO)+ {
<0

o0
- Y H,f?m(lzka—zkc)}J,,(kro) (36)
I=—o0

o= J"(= )" H2 , (kd)J, (kro )

[o.0]

(= 1) B (12ka)J, _, (kd)

(* J)pHIS%F)m

(12ka —2kc)

~Jp_n(kd)]fn(kro) (37)

369

hom = J"(= D" HZ. ,(— kd ) J, (kr,)

o] [ee]

/'L X (=)HR,(12ka)
I=—w p=—wx
[#0

'Jp—n(_kd)

- X X (=))’HR,(12ka—2kc)

[=—00 p=—0

Ty (= kd) |, (kry) (38)

e o]
B =8, HP (kr))+| X H? ,(12ka)
"Te5°
o0
- X

I=—-0c0

H® (12ka—2kc)|J,(kr,) (39)

c,(,“)=(-1)"+1Eosin(%c—ntx)-]n(k"o) (40)

C;b) _ (_1)n+1EOejk'dsin(zag — na)]n(krl)

(41)

where matrices are of the same dimensions as in Section
II-B. Note that subscripts n, m are used here in preference
to I, j to avoid confusion with previous equations and with

j=V-1.

I1I.

Consider an x-directed filament with uniform current I,
located at y = d’, z =/ inside a rectangular waveguide (see
Fig. 1). The electric field due to this filament is [4, eq. (21)]

(mvfd )sin(mwy)e“kmlz_”
a a

(42)

TRANSMISSION AND REFLECTION COEFFICIENTS

o0 .
Jknl .
E, = 2 - k. om

m=1 m

where
2
k= k' and k= (0] -2, form>1,n=\/§.

For large z, only the dominant mode is present (assuming
that other modes are cutoff) and
kel e ( ZZ— ) sin(%y ) e/*le =% (large z).

Exany =" "7,

X

(43)
Consider the single-post problem of Fig. 1. Post currents
ate given by (5). Now represent a section of the post with
surface current J, and width 7,df as a filament. The
elementary contribution to the electric field is

_ knrgJ,(8)dE “in 7(c+rycosf)
k'a a

. big ’ 3 _ ’
.Sln(_ay_)ejkrosmﬁe ij’

dE; =

for large z. (44)
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Integration over the post yields
s _ knro Ty Jk'z
Ei=- o sm( P )e f 77Jx(ﬂ)
.sin fﬁ—l__?cgﬁa_) e/kTosmé 19 (45)
where J,(6) is given by (5) and
7(c+rycosd)
a

9
sin(—w—c)cos(m)+cos( i )mn(m(-)s—).
a a a a
The following results are utilized:

I- / ( mrycos )

sin

-elkrosinfoinb gg = (—1)"2aJ (kr,)cos(na)
) 'nroc’osﬂ)
(=

Iz=fﬂ sin

- T

_ejk’rsmﬁejnﬁdg = (_1)”+1277Jn(kr0)sin(na).

The above results are obtained by expressing sine and
cosine as exponentials and using the integral form of the
Bessel function [17]

1 T
Jn(x) — 2_7;f_ ej(xsmB—ne) 4e0.

Equation (7) is applied, and the scattered fields below are
obtained

oo
E_g=——4—sin(%y-)e“fk'~" y (—1)"ansin(% —na)

k’a h= oo
(46)
and the total field E, for large z is
E =E +E;= Eosm( ay)
o 4 s a . [T7C
e K14+ > (1) ansm<——na) i
Eyk'a ,-— a
(47)

The transmission coefficient 7 is

E - noo.
T=—"=1+ 4 Y (-1 ansm(f—g—na>.
E:  Egkla, . a
(48)
—Dcos[(—”_lez 2cw]cos[(z+1)(——a>}
R =k = ¢

D{cos}(i—j)a—cos[ 5

Similarly, the reflection coefficient I' can be obtained by
changing the sign of the exponent and integrating with
respect to 8 as above. The result is

I'= 4 Z asm(—+na)

EOkan——oo

(49)

(i+j)m
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For the triple-post configuration of Fig. 3, the coefficients
are

T=1+

E.k'a n=§;w(_1)"
[a cos(na)+2b, s1n(7—na)] (50)
o)

 Egka , 7,

[ancos(n(x)-i-ansin(%c + na)}
(51)

and for the single-post array of Fig. 4, coefficients are

& 7c
_ _n\ sdY o [ TC
T 1+E0k/an}3w( 1) (a,,+bne )sm(a na)
(52)
jv'e)
r'= 4 y (an+bne_fk'd)sin(ﬂ—c+na). (53)
Eyk'a , - a

IV. REDUCTION OF MATRIX [ H] TO FORMS
SUITABLE FOR COMPUTATION

Matrix [H] elements, as given in (15), etc., are not
suitable for computation because the series involved con-
verges very slowly. The real part of [ H] for the single- and
triple-post configurations can be expressed in closed form.,
The imaginary part can be expressed in terms of integrals
suitable for rapid numerical evaluation. The results are
presented for the single post only. Real ( h(’)) and imagin-
ary (h"’) parts of 7, as given in (15) are

00
S -, (k2la)
I=—o0

1#0

Z k(zla—zc)]}f,(kro) (54)

[=—o

1y

R =8 J(kr0)+{

o0

> Y, (k2la)

[#=O

R =—8, Y, (kry)—

1yt

T —

(o]

- X K+,[k(2la—2c)]}J,(kro)- (55)

I=—-0o0

Let h() = h{D-J(kry), B = kT (kry). Then
RO=h0, A=k

The real part may be evaluated in general, as follows, if
only the dominant mode propagates (7 < ka < 27):

for |i — j] odd

5 sl (5 -]

where

(56)

for|i — j|even
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If the post is at the center of the waveguide (¢ =a/2),
(56) becomes

for |i — j| odd
for|i— jleven’

(57)
Equation (56) above is obtained by using an integral form
of the Bessel function and various manipulations. Details
are given in [20]. The imaginary part may be evaluated as
follows:

B = hin = 0,
2Dcos(ia)cos( ja),

37

Data for the centered and off-center single-post obstacle
have been computed. These agree precisely (within better
than 1 percent) with the data in Marcuvitz and that of [16]
for larger posts. Figs. 5 and 6 show normalized reactances
(x,/20)(A,/2a) and (x,/z¢)(A,/2a) of the triple-post
configuration. The configurations of Fig. 5, with post axes
equally separated from each other and from waveguide
walls, is one -which is commonly used in triple-post filter
design. The geometry of Fig. 6 corresponds to equal spac-

{/W/z t)dt+f 5 t)dt] for |i — j| odd
B = (58)
: 81,§’(Z§)) [f”/z (t)dt+f £.(1) dt] for |i — j| even
where
_sin[(ka —2kc)sint]sin(i + j)t
)= sin(kasin ¢) (59)
__sinh[(ka —2kc)sinh¢]sinh (i + j)1
h(1)= sinh (kasin ht) ‘ (59b)
_cos[(ka—2kc)sint] cos(i + j)t —cos(kasint)cos (i — j)¢
fil)= sin(kasint) (59)
fi(1) = cosh (i — j)te *e™¢ — cosh (i + j)tcosh[(ka —2kc)sin ht] (59d)

Equation (58) is obtained by using an integral form of the
Neumann function and various manipulations. Details are
given in [20]. Series forms for (54) and (55) are given by
Williamson [11].

The integrals [§/%f,(¢)dt, (p =1,3) are improper since
there are poles in the 1nterva1 (0, 7/2). However, the Cauchy
principal value may be obtained by subtracting from and
adding to the original functions f,(z) a selected term,
thereby changing the poles to removable singularities. Two
other integrals are improper because of an infinite range of
integration. However, the integrand in each case decreases
rapidly with increasing #; the integrals may be evaluated
over a finite interval and the error involved may be speci-
fied.

The reduction of matrix [H] for the triple-post config-
uration is quite similar to that outlined above. For the
single-post array of Fig. 4, the reduction is more complex
but proceeds along somewhat similar lines. In this case,
integrals are required for both real and imaginary parts.
Details are given in [20].

V. RESULTS

Computer programs have been prepared to carry out the
analysis of the preceding sections. Listings are included in
[20]. Errors in the various portions of the programs and N,
which determines the number of terms of the Fourier
series, may be specified. Program listings may be obtained
from the authors.

sinh ( kasinh )

ing of all images. Data are given for various frequencies
and post sizes, curves for A /a=1.01 and 1.99 describe
behavior just above TE,; and just below TE,, mode cutoff,
respectively. Note that data are independent of waveguide
ratio b/a. The data for the single-post obstacle indicated
dispersion of the curve for (x, /zy)(A,/2a) and for d /a >
0.25. Note that dispersion occurs for smaller posts in Figs.
5 and 6, as expected. Furthermore, dispersion occurs ap-
proximately for d /a > 0.11 in Fig. 5 and for d /a > 0.15 in
Fig. 6. The minimum image spacing is larger for Fig. 6
than for Fig. 5. It is noted also that the triple-post disper-
sion for (x,/zo)(A,/2a) is considerably smaller than that
of the single post. The data of Figs. 5 and 6 also has been
compared with that of the multifilament method [16].
Agreement is better than 1 percent. Fig. 7 shows computed
transmission coefficient data for a two-element post fiiter.
The solid curve shows the complete data with all interac-
tions taken into account. The dotted curve (approximate
solution) shows the result of computation which neglects
the higher order (cutoff) mode interactions between posts.
In other words, the dotted curve corresponds to results
obtained by cascading single-post equivalent circuits, such
as those presented in [16]. The higher order mode interac-
tions become more significant as post size increases. Fig. 7
shows an appreciable difference between curves, even
though the spacing is larger than a half-wavelength. Higher
order mode interactions therefore may be neglected, except
in cases of extremely high Q; even in those cases, the
fractional shift of center frequency may be very small (see
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Fig. 7. Filter response (transmission coefficient) of a single-post array
(d/a=030).

Fig. 7). Similar results (not shown) have been obtained for
triple-post arrays. These show less effect of higher order
mode interactions in accordance with [3].

VI. CONCLUSION

A complete analysis of cylindrical post structures in
rectangular waveguides has been developed. As many
Fourier series terms (e/*%) as desired may be taken into
account. All higher order mode interactions between posts
are considered. Computations are rapid and accurate. Er-
rors are controlled as part of the computer program. Data

is presented for triple-post configurations and for a two-
post filter.
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Theory and Numerical Modeling of a Compact
Low-Field High-Frequency Gyrotron

PETER VITELLO, WILLIAM H. MINER, axD ADAM T. DROBOT

Abstract —The electron-cyclotron maser interaction provides an ex-
tremely efficient means of generating high-power radiation in the millime-
ter and submillimeter regimes. For devices where both high frequencies and
low magnetic fields are required, high cyclotron-harmonic interactions must
be considered. We present here a linear and nonlinear analysis of a TE ;,
whispering-gallery-mode gyrotron. Resonances at the mth and (m £+ 1)th
cyclotron harmonic are found. The start oscillation condition is calculated
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from linear theory for a wide range of parameters. Maximum efficiency for
different beam and cavity conditions is calculated with a fully relativistic
numerical simulation code. High efficiencies, > 35 percent, have been
found at the mth cyclotron harmonic. The effect on the efficiency of an
initial velocity spread in the electron beam has also been considered.

I.. INTRODUCTION

HE ELECTRON-CYCLOTRON maser interaction

provides perhaps one of the most efficient mecha-
nisms for generating continuous high-power radiation in
the millimeter and submillimeter regimes [1]-[6]. The inter-
action takes place between the electromagnetic (RF) waves
of a cavity or waveguide, and an electron beam in which
the electrons comprising the beam move along individual
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