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Abstract —A complete analysis of multiple-post indnctive obstacles in

rectangular wavegoide is presented. A moment method solution with ex-

ponential ( eJ”e ) expansion and weighting functions is used in a Galerkin

solution. Post currents are expressed as a Fourier series. As many Fourier

series terms ( eJno ) as desired may be included. All bigher order (cntoff)

mode interactions between posts are taken into account. The solution is

rapid and accnrate, and errors maybe controlled (specified). Data are given

for the triple-post obstacle and for a two-element filter.

I. INTRODUCTION

T HE CYLINDRICAL POST in a rectangular wave-

guide was first treated by the well-known and widely

referenced variational method of Schwinger [1], and the

results are given in Marcuvitz’s Waueguide Handbook [2].

Fig. 1 shows the geometry and a cylindrical coordinate

system centered at the post axis. A dominant mode is

incident upon the post which is assumed to be a perfect

conductor. The currents induced on the post are longitudi-

nally directed (parallel to the post axis) and vary cir-

cumferentially. There is no longitudinal variation of the

currents. The post currents thus may be represented in

terms of a Fourier series Z!! ~A.e~””. Schwinger had taken

into account the zeroth and first-order terms of the series

in his variational solution. The results were limited to posts

which were moderate in size and distant from each other

and from the waveguide walls, but very accurate within

those limitations. The results were useful in the design of

microwave post filters.

Craven and Lewin [3], [4] pointed out the advantages of

a triple-post configuration, such as that of Fig. 3, in

suppressing higher order modes. Mariani [5] analyzed the

triple-post configuration, but found it necessary to add

experimentally determined correction factors.

Recent work with inductive posts includes that of Abele

[6] and Moschinskiy and Berezovskiy [7]. Abele treats

the symmetrical-post arrangement. Moschinskiy and

Berezovskiy use a doubly infinite set of linear equations.

Neither treats higher order mode interactions. Posts with

gaps have been treated by a number of authors, including

Joshi and Cornick [8], Eisenhart and Kahn [9], Hicks and

Khan [10], and Williamson and Otto [11]. Ferromagnetic

posts have been treated by Okamoto et al. [12], and induc-

tive strips have been treated by several authors [4], [13],

and [14].

Manuscript recewed June 1, 1983; revised November 15, 1983.
The authors are with the Department of Electrical and Computer

Engineering, Syracuse University, Syracuse, NY 13210.

b
1/

1

Fig. 1. A single-post obstacle in a rectangular waveguide.

As time went by, filters of higher Q were desired. These

could be obtained by using either larger posts or a multi-

ple-post configuration, such as that of Fig. 3. For either of

these choices, it is necessary to take into account the higher

order terms of the Fourier series. This paper uses a method

of moments [15] solution to the single- and triple-post

problems and to arrays of such post configurations. Ex-

ponential expansion (eJ”@) and weighting functions [15]

are used in a Galerkin solution, which is also variational,

The complete formulation is developed for all terms of the

Fourier series. The series is truncated at n = + N and a

matrix equation is obtained for the unknown coefficients

of the Fourier series. The convergence of the solution is

studied as a function of the number of terms used. In some

cases, terms were required for N as large as five.

The solution utilizes an infinite series of images (Fig. 2)

of the post currents to obtain the electric fields in the

waveguide. Thus, fields are represented in terms of free-

space post currents. The scattered fields are expressed in

terms of a single polar coordinate system through the use

of the addition theorem of the Hankel function. Incident

fields are also expressed in terms of the same polar coordi-

nate system. The application of the boundary conditions at

the post then yields the complete equations which, when

truncated at n = + N, represent a system of 2N + 1 un-

knowns, which may be expressed as the matrix equation

[c]= [H][a].

Because of the use of image fields, the elements of the

matrix are each represented as infinite series which con-

verge very slowly. A method is found which enables us to
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Fig, 2. Images of the single post.

sum the real part of the elements of [H] in closed form.

The imaginary part is changed to a form involving both

proper and improper integrals. Both are evaluated numeri-

cally. A method is developed for estimating and specifying

(controlling) the errors involved in the numerical evalua-

tions. The computation is very rapid and the errors due to

numerical evaluation may be specified. There are three

sources of error: a) the evaluation of the proper integrals,

b) the evaluation of the improper integrals, and c) the

truncation at n = + N. The first two sources are controlled

by specifying error levels, and the last is evaluated by

varying N and observing convergence.

Once the post currents (coefficients of the Fourier series)

are obtained, the total scattered fields, transmission and

reflection coefficients, and equivalent circuits may be read-

ily obtained. The data for single posts of moderate size plot

right on top of Marcuvitz’s data. The data for larger posts,

and for those near the waveguide wall, agree within a

fraction of one percent with data obtained from a mul-

tifilament approximation described in a previous paper

[16]. The triple-post data also agree precisely with that

obtained by the filamentary model.

Each of the two models used has its advantages. The

Fourier series current model is variational, requires fewer

unknowns, and is particularly suitable for cylindrical-post

geometries of all types. The multifilament model is simpler

and may be more generally useful in the characterization of

obstacles of arbitrary shape.

For triple-post configurations, such as that of Fig. 3, the

formulation is quite similar to that of the single post. For

arrays of posts with separation in the direction of propaga-

tion, the formulation is quite different. For the most accu-

rate results, higher order waveguide mode interactions must

be taken into account. In this case, the elements of [L?] are

of a more complex form. Methods are used again, to

reduce these forms to those suitable for computations;

both the real and imaginary parts are expressed as in-

tegrals, which are evaluated numerically. Again, the errors

involved are controlled by specification. Fig. 4 shows the

in-line case (post-centers have identical y coordinates). Post

arrays with non-in-line elements also can be treated by

similar methods.

As a result of the formulation developed, one may treat

arrays of posts in a rectangular waveguide, taking into

account as many terms of the Fourier series for the cur-

rents as desired, and taking into account all higher order

mode interactions between posts. Asymmetrical post con-
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Fig. 3. A triple-post obstacle in a rectangular waveguide.
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Fig. 4. A single-post array in a rectangular waveguide.

figurations may be treated; for example, the off-center post

data of [16] was calculated by both the Fourier series

surface current and the filamentary current models. Results

are presented for the equivalent circuits of triple-post con-

figurations and for the filter response of a two-element

post filter.

II. THE BASIC FORMULATION

In this section, the basic formulation for the single-post

is presented, and the formulations for the triple-post con-

figuration and for the post array are summarized, In each

case, a matrix equation is obtained for the post currents.

A. Single-Post Obstacle

Fig. 1 shows a rectangular inductive post in a rectangu-

lar waveguide. Dominant mode fields are incident. A domi-

nant mode traveling in the z direction is incident upon the

post. A cylindrical coordinate system is centered on the

post axis at z = O, y = c. The incident electric field E: may

be expressed as follows:

(1)

where

The incident wave can be expressed in Fourier series

form. Substitution of y = c + rcos 8 and z = rsin O into (1)
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yields

[
E; = EOe-l~’rSln@~in ~(c+ ~COS@)

a 1=~{e,[,nc/a,-krsln(e -a)l _ ~-,[(mc,a,+krsln(e+ a),)

(2)

where

.()
a=tan–l -.!!

k’a “

The generation function for the Bessel function is [17]

e(x/2)(r-t-’)= ~ .l,(x)t”.
~=.~

Let t = eJ”, x = kr, and the generation function becomes

~~krsine = ~ Jn(kr)eJn’. (3)
~=.~

Replacement of O with 6 ~ a in (3) and substitution of (3)

into (2) yields the desired Fourier series form

E;= ~ EOsin (~+~a)~.(k~)e-]n’
~=.~

= ~ (-l)nEosin(%-~a) Jn(kr)”no (4)~.—~

The post surface current density may be represented as

JX(6) = ~ a~ejn%. (5)
~=—~

Thus, full-domain expansion functions eJno have been used

for the post surface current. Identical weighting functions

are used later, resulting in a Galerkin or variational solu-

tion [15].

The post currents now may be imaged across waveguide

walls. Imaging across horizontal walls (x = O, b) yields a

cylinder of infinite length. The fields in free space due to

the currents of (5) on a cylinder of infinite length in free

space are

Ex = ~ anH~2)(ki’)eJn8 (6)
~=–~

where the coefficients {an } and {a;} are related [18] by

2UE

a;’ = – k’nro.ln(kro)
an. (7)

Imaging across vertical waveguide walls yields an infinite

number of such cylinders @ free space (Fig. 2). The total

scattered electric field (the field due to post and image

currents) may be expressed as

E;= E~t + E:m’g”( +) + E;mages( -) (8)

where images ( ~ ) represent images with currents identical,

opposite, respectively, to post currents. Thus

E:mages( +) =
~ ~ UmH~2)(kr,)eJmo’

[:+–OW m=–w

The addition theorem of the Hankel function [19] allows us

to represent the above results in terms of the cylindrical

coordinate system of Fig, 1, for r < 2a

E:mages( +) =

l;~–om m=–w ~=—~

and for r < 2C

E:mages( -)=

- ~ i um i @~m[k(21a-2c)] .ln(kr)e~”e.
I=–mm=–m ~=—*

(11)

At the surface of the post, the total electric field must be

zero, i.e.,

E~(r=ro)+E;(r =rO)=O. (12)

Substitution of (4), (6), (10), and (11) into (12) yields w

equation with triple sums. Multiplying that result by a

weighting function e “ J“’@and integrating from O to 2 T in 13

yields by orthogonalit y the following equation:

(a )
.J. (kro)+(–l)”Eosin ~–na J~(kro)=O.

(13)

The current is now approximated by a finite number of

expansion functions, and (13) can be written in the follow-

ing matrix form:

[c]=[H][a] (14)

where matrix [H]= {hIJli, j= –N, ” .0, –l,O,l, ” c“,N} is

described by
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and where 8,J is the Kronecker Delta
Ez, = ~ bnH~2j(kr)eJn(” -o)

~=–m

= ~ (-l)”bnH~2)(kr) e-,”@ (22)
~.—~

Primed and unprimed coefficients are related by (7), as

before.

Boundary conditions are applied at the center post and

at one of the other posts. The result is a matrix equation.

6,, =
{

1 i=j

O i+j

and

vector [c] = {c, } (i=- N,.., –l,O,l, ”-”,N)

,sin(~-i~)J(~ro) (16)~l=(–l)’+lfi

and

vector [a] = {a. } (n=- N,, -l, O,l,.,N). 1[1[[H(l)] ~ [H(2)] [a] = [~a]
-———— —-—— (23)
[Hf3)]:-~i~;j ~~] [Cb]

[1[a]
[CI=[HI [b]

Thus, expansion and weighting functions eJnO have been

used where – N < n < N. N may be varied to study con-

vergence of the solution.

Note that a slightly unusual definition of matrix [H] has

or

where
been employed in

negative integers

which the subscripts can be zero or

. . .
-N ‘-N, N

H 0,0

.: I

. .

[

h – N,

[H]= :

1- E H}i\(nz2kLz+ ka) J(kro) (24)

1h N.–N
. . .

‘N, N ] J

B. Triple-Post Configuration

The triple-post configuration shown in Fig. 3 is often

used in microwave filter design. This configuration can be

treated by a method similar to that of the single post. The

results will be summarized here. They are given in detail in

[20].

Assume that a dominant mode is incident upon the

symmetrical triple-post configuration of Fig. 3. The in-

duced current density on the centered post is

m

– H)~~(m2ka –(~ka+ kc))

+ H\~~(m2ka+(~ka– kc))

– H}?J(m2ka + (~ka + kc))] +(kro) (25)

C:=(–1) l+lEOcos(ia){(kro) (26)

h(3J= ~ [Hf?y(m2ka +(~ka – kc))
IJ

~.—~.lxc(r3)= ~ a~eJ** (17)
~.—~

and that on the left-hand post is

J,,(9) = ~ b~eJnO. (18)
~=—~

Then, by symmetry, the current on the right-hand post is

~=.~ ~=—~

(19)

Imaging as before across the horizontal wall yields three

cylindiks of infinite length. The corresponding free-space

fields due to these cylinders with currents (17), (18), and

(19) are, respectively

.

C:=(–1)
‘+lEosin(%ia)~(krJ ’29)

EXC= ~ anH~2)(kr)eJnE (20)
Matrices [a], [b] represent coefficients of (20), (21) where

– N < n <N. Thus, all square matrices [ H(”] of (23) are

2N+1 by 2N+1 and all column matrices [a], [b], [c”], [cfi]

are 2 N + 1 element columns.
EX. = ~ bnH~2)(kr)eJ”o (21)
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C. Single-Post Array

Fig. 4 shows two posts whose axes are identical y coordi-

nates and different z coordinates, i.e., they are separated in

the direction of propagation. A dominant mode is incident

upon the posts. Post currents are represented as follows:

J(o)(0) = ~ a~eJn*x (30)

(31)

and electric fields due to the corresponding infinite cylin-

ders in free space are

(32)

E(l) = ~ bnH~2)(kr’)eJne’.x (33)

Primed and unprimed coefficients are related by (7).

The incident fields may be expressed in terms of either

polar coordinate system

‘o(a)
E.j= ~ (–l)”E sin g –na J.(kr)eJ’o (34)

~=.~

OJ
E; = ~ (–l)nEoe-Jk’dfh (~-n~)J.(kr’)@’

~=—~
(35)

where

~=tan-l(fi)=s&l(&)=COS-l(+).

The addition theorem for Hankel functions is applied as

before. A transformation of coordinates from one polar

coordinate system to the other is also required. Boundary

conditions are applied at each post and orthogonality is

invoked, resulting in a matrix for the coefficients which is

identical in form to (23). Matrices for this problem are

defined as follows:

h~l~ = ~,~ll~z)(kro)+

{

~ H~?~(k21a)
1y;om

)

- ~ H~~~(12ka -2kc) J.(kro) (36)
[=–m

- ~ ~ (-j)pH~~~(12ka -2kc)
I=–cop =-m

‘1

“JP-. (kd) J.(kro) (37)

(38)

Jn(krl) (39)

(40)

C:m= (–1) ‘+lEoe’k’dsin(%na)Jn(krJ(41)

where matrices are of the same dimensions as in Section

II-B. Note that subscripts n, m are used here in preference

to i, j to avoid confusion with previous equations and with
j=~.

III. TRANSMISSION AND IIEFLECTION COEFFICIENTS

Consider an x-directed filament with uniform current 1,

located at y = d‘, z = 1 inside a rectangular waveguide (see

Fig. 1). The electric field due to this filament is [4, eq. (21)]

(42)

where

(( )
~T 2

kl=jk’ and k.= —..—. –k2,
r

form> l,q= f.
a

For large z, only the dominant mode is present (assuming

that other modes are cutoff) and

(43)

Consider the single-post problem of” Fig. 1. Post currents

are given by (5). Now represent a section of the post with

surface current JX and width r. de as a‘ filament. ‘rhe

elementary contribution to the electric field is

dE: = –
kqroJX(6) de sin7r(c+rocos O)

k ‘a a

()
. sin ~ eJk’ro singe – Jk’Z

9 for large z. (44)
a
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Integration over the post yields

7r(c+rOcost9)
. sin ey~’’””no dd (45)

a

where <Y(I3) is given by (5) and

m(c+rocos~) =
sin

a

%3+’0:s7+c0sE)sin(Tr0:s7
The following results are utilized:

.eJk’rSlr18eJrI@ d61 = (–l)”+12T~n(~ro)sin(~a).

The above results are obtained by expressing sine and

cosine as exponential and using the integral form of the

Bessel function [17]

Equation (7) is applied, and the scattered fields below are

obtained

()E;=~sin q e-Jk” ~ (–l)naflsin
a (:-””)~=.~

(46)

and the total field EX for large z is

()
EX= E:+ E:= Eosin ~

-e

[

–Jk’z 1+

( )]
& ~ (-l)”a.sin ~-na .

0 n— cm

(47)

The transmission coefficient T is

(48)

For the triple-post configuration of Fig. 3, the coefficients

are

J,a : (-1)”T=sl+—
n— m

“[aHcos(na)+2b, sin (~-na)] (50)

Eo~a ? [
r=— a~cos(na)+2b~sin (%+””)1j——-~

(51)

and for the single-post array of Fig. 4, coefficients are

T=l+ * _~ (-l)”(afl +bfleJ’’’)sin(~ -na)
o n- w

(52)

E~,a ,Z=~ (a. + b.e-J’’’)sin(~ + na). (53)r=—
cc

IV. REDUCTION OF MATRIX [H] TO FORMS

SUITABLE FOR COMPUTATION

Matrix [H] elements, as given in (15), etc., are not

suitable for computation because the series involved con-

verges very slowly. The real part of [H] for the single- and

triple-post configurations can be expressed in closed form.

The imaginary part can be expressed in terms of integrals

suitable for rapid numerical evaluation. The results are

presented for the single post only. Real (h~;)) and imagin-

ary (h~j) ) parts of A,J as given in (15) are

)- ~ <+j[k(21a-2c)] ~(kro) (54)

The real part may be evaluated in general, as follows, if

only the dominant mode propagates (m < ka <2 T ):

[

[

(i+j)fi+2c7r
–Dcos z

~(r) = fi(~) =
y]cos[(i+j)(~ -a)] forli-jlodd

ZJ ]1

[

(i+j)9r
D{cos}(i–j)a–cos z ‘%cos[(i+w-a)]‘orl’-~leven’56)

Similarly, the reflection coefficient r can be obtained by where

changing the sign of the exponent and integrating with

respect to /3 as above. The result is
‘=&=k:a

r= ~ _5 ansin(g+na).a
(49)

o n——m
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If the post is at the center of the waveguide (c= a/2), Data for the centered and off-center single-post obstacle

(56) becomes have been computed. These agree precisely (within better

{

o, for Ii – jl odd
than 1 percent) with the data in Marcuvitz and that of [16]

)J;) = fi;;) = for larger posts. Figs. 5 and 6 show normalized reactance
2Dcos(ia)cos(ja), forli– jl even”

(x. \ZO)(~g/lLZ) and (X~/ZO)(Ag/2a) of the triple-post
(57) configuration. The configurations of Fig. 5, with post axes.,

Equation (56) above is obtained by using an integral form
equally separated from each other and from waveguide

of the Bessel function and various manipulations. Details
walls, is one “which is commonly used in triple-post filter

are given in [20]. The imaginary part may be evaluated as
design. The geometry of Fig. 6 corresponds to equal spac-

follows :

I [J2 7r/2
—

mw+fk(w], for lZ– jl odd
‘i70

~:;) =
_8 ,~(kro) +2 7r/2

[/‘J<(kro) ~ ()
f3(f)~~+Jm.f4(t) dt], for,i-jleven

o

where

f,(t) z
sin[(ka –2kc)sin t]sin(i+j)t

sin ( ka sin t)

(58)

(59a)

f,(t)=
sinh[(ka –2kc)sinhr] sinh(i+j)t

(59b)
sinh ( ka sin h )

f3(t) =
cos[(ka –2kc)sint]cos(z+ j)t–cos(kasint )cos(i– j)t

(59C)
sin ( ka sin 1)

f4(t)=
cosh(i – j)te-~as’*’ –cosh(i+ j)lcosh [(ka–2kc)sinht]

(59d)
sinh ( ka sinh t)

Equation (58) is obtained by using an integral form of the

Neumann function and various manipulations. Details are

given in [20]. Series forms for (54) and (55) are given by

Williamson [11].

The integrals J:/2fp(t)dt, (p =1,3) are improper since

there are poles in the interval (O, 7r/2). However, the Cauchy

principal value may be obtained by subtracting from and

adding to the original functions fp(t) a selected term,

thereby changing the poles to removable singularities. Two

other integrals are improper because of an infinite range of

integration. However, the integrand in each case decreases

rapidly with increasing t; the integrals may be evaluated

over a finite interval and the error involved may be speci-

fied.

The reduction of matrix [H] for the triple-post config-

uration is quite similar to that outlined above. For the

single-post array of Fig. 4, the reduction is more complex

but proceeds along’ somewhat similar lines. In this case,

integrals are required for both real and imaginary parts.

Details are given in [20].

V. RESULTS

Computer programs have been prepared to carry out the

analysis of the preceding sections. Listings are included in

[20]. Errors in the various portions of the programs and N,

which determines the number of terms of the Fourier

series, may be specified. Program listings may be obtained

ing of all images. Data are given for various frequencies

and post sizes, curves for A/a =1.01 and 1.99 describe

behavior just above TEIO and just below TE20 mode cutoff,

respectively. Note that data are independent of waveguide

ratio b/a. The data for the single-post obstacle indicated

dispersion of the curve for (x~/zO)(Ag/2a) and for d/a>

0.25. Note that dispersion occurs for smaller posts in Figs.

5 and 6, as expected. Furthermore, dispersion occurs ap-

proximately for d/a >0.11 in Fig. 5 and for d/a> 0.15 in

Fig. 6. The minimum image spacing is larger for Fig. 6

than for Fig. 5. l[t is noted also that the triple-post disper-

sion for (x. /z. )( A ~/2 a ) is considerably smaller than that

of the single post, The data of Figs. 5 and 6 also has been

compared with that of the multifilament method [16].

Agreement is better than 1 percent. Fig, 7 shows computed

transmission coefficient data for a two-element post filter.

The solid curve shows the complete data with all interac-

tions taken into account. The dotted curve (approximate

solution) shows the result of computation which neglects

the higher order (cutoff) mode interactions between posts.

In other words, the dotted curve corresponds to results

obtained by cascading single-post equivalent circuits, such

as those presented in [16]. The higher order mode interac-

tions become more significant as post size increases. Fig. 7

shows an appreciable difference between curves, even

though the spacing is larger than a half-wavelength. Higher

order mode interactions therefore may be neglected, except

in cases of extremely high Q; even in those cases, the

from the authors. fractional shift of center frequency may be very small (see
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Fig. 5. Equivalent circuit for the triple-post obstacle (uniform spacing,
identical posts).

Fig. 6. Equivalent circuit for the triple-post obstacle (uniform image
spacing, identical posts).

o
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$-4,0 -

3
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-12.0– 1.0C0235
I I I I 1/ [ I I
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Fig. 7. Filter response (transmission coefficient) of a single-post array
(d/a = 0.30).

Fig. 7). Similar results (not shown) have been obtained for

triple-post arrays. These show less effect of higher order

mode interactions in accordance with [3].

VI. CONCLUSION

A complete analysis of cylindrical post structures in

rectangular waveguides has been developed. As many

Fourier series terms (e~””) as desired may be taken into

account. All higher order mode interactions between posts

are considered. Computations are rapid and accurate. Er-

rors are controlled as part of the computer program. Data

is presented for triple-post configurations and for a two-

post filter.
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Theory and Numerical Modeling of a Compact
Low-Field High-Frequency Gyrotron

PETER VITELLO, WILLIAM H. MINER, AND ADAM T. DROBOT

Abstract —The electron-cyclotron maser interaction provides an ex.

tremely efficient means of generating high-power radiation in the millime-

ter and submillimeter regimes. For devices where both high fr~quencies and

low magnetic fields are required, high cyclotron-harmonic interactions must

be considered. We present here a finear and nonlinear analysis of a TEmll

wbispcring-gaflery-mode gyrotron. Resonances at the rnth and (m + l)th

cyclotron harmonic are found. The start oscillation condition is calculated
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from linear theory for a wide range of parameters. Maximum efficiency for

different beam and cavity conditions is calculated with a fnliy relativistic

numericaf simulation code. High efficiencies, >35 percent, have been

found at the rrrth cyclotron harmonic. The effect on the efficiency of an

initiaf velocity spread in the electron beam has afso heen considered.

I. INTRODUCTION

T HE ELECTRON-CYCLOTRON maser interaction

provides perhaps one of the most efficient mecha-

nisms for generating continuous high-power radiation in

the millimeter and submillimeter regimes [1]–[6]. The inter-

action takes place between the electromagnetic (RF) waves

of a cavity or waveguide, and an electron beam in which

the electrons comprising the beam move along individual
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